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TABLE 5

PROBLEM SET B:
PROBLEM SPECIFICATIONS AND FI~~ET SOLUTION STATISTICS

BASIC TEST PROBLEM: 50 x 150, 1500 ARCS
FIXED CHARGE DENSITY: 40% (605 ARCS)
UNIT COSTS 1—10, FIXED COSTS 1—100

PROBLEM TOTAL SUPPLY F/C RATIO SP PIVOTS TM

1 1K 7 ,257 8 1220 5.99

2 2.5K 8,252 12 1616 8.06

3 5K 2 ,158 77 3163 19.69

4 10K 1,076 114 3788 26.09

5 50K 214.2 49 2364 14.62
6 lOOK 170.0 146 2338 14.77

7 LM 11.47 130 3714 31.12

8 5M 2.40 189 3725 30.17

9 1OM 3.34 2 4490 41.64
10 50M 1.74 2 1199 8.80

11 lOOM .36 1155 6.21

F/C Ratio — Ratio of total fixed cost to total variable cost in
optimal solution value

SP — number of transportation subproblems solved by FIXNET
Pivots — number of pivots made in solving subprob lems
TM — FIXNET solution time in CDC 6600 central processor seconds
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Note, however , that the solution times presented here are

for mixed integer programming problems with 1500 continuous variables

and 600 fixed charge variables. Even the largest time of 3]. seconds

is remarkably good for problems of this size and the range of solu-

tion times emphasizes the efficiency and robustness of the new algo-

rithm.

Test Set C, described in Table 6, was designed to study

the effect of problem dimensions holding the number of fixed charge

variables constant. With these problems, the average solution times

increased with increasing dimension sizes, as would be expected, but

again the average times slightly more than doubled when the number

of fixed charge variables was doubled. Since solution time for

combinatorial problems of ten increases geometrically with the number

of integer or f ixed charge variables, the eff iciency of this new

algorithm is again demonstrated.

In summary, testing has demonstrated that the code FIXNET,

based on the new solution algorithm, is extremely efficient for

solving fixed charge transportation problems. It has solved prob—

lems with 3,000 constraints and 1,200 fixed charge variables in

nine seconds on a CX 6600, and is designed for the sparse large—

scale problems encountered in real—lorld applications. This pro—

cedure brings many heretofore unsolvable problems within the reach P
of practitioners and researchers alike, and in general provides a

tool for handling the realistic considerations of fixed charges and

economies of scale that have previously been neglected in network
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TABLE 6

PROBLEM SET C:

PROBLEM SPECIFICATIONS AND FIXNET SOLUTION STATISTICS

DIMENSIONS NO. ARCS NO. FIXED CHARGE ARCS SP TIME

30 x 70 300 300 2 .607

600 62 6.693

900 8 2.236

1200 2 1.973
50 x 150 750 2 3.151

1500 2 5.150

3000 2 6.513

30 x 70 600 600 50 7.424

1200 8 3.253

2000 2 3.724
50 x 150 600 2 2.287

1200 192 28.841

2000 8 8.453

3000 3 11.987

100 x 300 3000 2 14.869

50 x 150 3000 1200 4 9.029

RANGE OF UNIT COSTS : 1 — 10 FIXED COSTS : 1 —
TOTAL SUPPLY : 100 TIMES THE NUMBER OF SOURCES

SP — number of transportation subproblems solved
TIME — solution time in CP seconds on CDC 6600

ii
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applications due to the computational difficulty ordinarily viewed

as inherent in such considerations.
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APPENDIX

THE GENERALIZED PREDECESSOR LABELING METHOD FOR COMPUTING

PENALTIES IN FIXED CHARGE TRMSPORTATION PROBLEMS

The principal requirement of Driebeek—type penalty calcu-

lations is to know the updated simplex row coefficients for each

row associated with a basic integer variable. To obtain such co-

efficients for all rows of interest by a single pass, we use the

following generalized predecessor labeling procedure. Define the

path P(q ,s) to be the ordered set of nodes and links connecting

and including nodes q and s in the rooted spanning tree basis.

Hence, P(q,s) q(q,h),h ,. ..,k,(k ,s),s. Therefore, nonbasic arc

(q,a) is represented in the basis by the arcs corresponding to the

links in P(q,s), with the arcs ’ directions determined from their

origin—to—destination orientation.

The coefficient of xqg in the updated row equation for a

basic variable x~~ is therefore zero if arc (i,j) does not lie on

P(q,s). If the basic arc (i,j) does lie on P(q,s), the row co—

efficient of x is +1 if the basic arc is oriented in the same
• qs

direction as its corresponding link in P(q,s) and is —l if the

basic arc is oriented in the opposite direction. By the connection

between Yjj and the coefficient of X
qg 

in the row equation of

the integer fixed charge variable y
~~ 

is therefore, corresponding—

ly, 0, 1/U~~ or —1/U~~.

31
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Theref ore, by tracing out the stepping stone path (basis

equivalent path) for each nonbasic variable X
q5~ 

all nonzero

tableau row coefficients for this variable in the row equation for

each basic X
jj 

(and hence Yjj) can be determined. This path is

found for a given nonbasic arc (q,s) by tracing the predecessors of

q and s to their point of intersection.

The generalized predecessor labeling method takes advan-

tage of the preceding observations as follows.

Let p (q) be the predecessor of node q or zero if q — r

(the root node of the basis tree), and let I be the set of basic

fixed charge arcs with flow between their upper and lower bounds.

The generalized predecessor label for node q is defined as: (a)

zero if q — r , (b) the f irst node q* ~ q in P(q,r )  such that

(q*,p(q*))c1 or (p(q*),q*)cI, or (c) r , if q* does not exist.

(In case (b), node hcP(q,r) “preceeds” node knP(q,r) if d(h) > d(k),

where d(h) is the number of nodes in P(h,r).) This value is flag—

ged with a “*“ if (q,p(q))~ I and (p(q),q)~ I.
The fixed charge arcs in the basic representation of non—

basic arc (q,s) are recovered by tracing the generalized predeces—

sors of nodes q and s to their point of intersection. For each

node k encountered in this tracing, the link (k,p(k)) corresponds

to a basic fixed charge arc, except when node k is flagged with

or is the root node. As before, the orientation of the basis

arc with respect to its link determines the value of the basis row •

coefficient .
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Figure A—]. shows a transportation basis with the bolder

links indicating f ixed charge arcs whose row coeff icients are to

be determined. The generalized predecessor labels are given next

to each node and in the NODE/GP array. These indices indicate

that the nonbasic arc (5,13) has a +1 coefficient in the simplex

rows of basic arcs (5,10) , (2 ,8), and (1,9) and a —l coefficient

in the row of basic arc (4,9). Note that the generalized prede-

cessors “skip over” links (10,2) ,  (8,1), and (13,4).

The generalized predecessor labels have the effec t of

logically compressing the basis tree to include only those fixed

charge arcs of interest. By so doing, the work required to compute

the full set of penalties is greatly reduced over other techniques.
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(0)

(*1) 8 ( 1)  9

( 1) 2 (*1) 3 (9)  4

(*�~‘jj~ ~~~~~~~(*~~) ~~~~~~~~~~~~

~~ 
(~~~)

(*2)

NODE GP

1 0
2 1
3 * 1
4 9
5 2
6 2
7 4
8 1
9 1

10 2
11 * 2
12 *1
13 4
14 •4Lis *4

Bolder links indicate fixed charge arcs with flow between upper and
lover bounds .

Figure A—l — Optimal Rooted Spanning Tree Basis for
7x8 Transportation Problem with Generalized 

•Predecessor Node Labels
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